Refine Your Search

Topic

Search Results

Technical Paper

Characteristics and Matching of the Pressure Wave Supercharger ComprexSr to a Passenger Car Engine

1984-01-01
845015
The Comprex pressure-wave machine is well qualified for supercharging automotive Diesel engines, demonstrating as it does, improvements in power output, fuel consumption and emissions. The special form of the charging characteristics is established from theoretical considerations of the pressure wave compression process. Data from the currently available production machines show, with the aid of supercharging parameters, such a pressure ratio, density ratio and adiabatic compression efficiency, the operating limits of the machine with respect to cell filling and pressure-wave tuning. A computer program, interpolating from measured data and using a simplified model of the engine, allows optimisation of an installation considering Comprex type, shaft drive ratio, charge air cooling and control system functions. The correlation of the program with measured values is adequate for the purpose of engine-to-Comprex matching.
Technical Paper

The Transient Behavior of Supercharged Passenger Car Diesel Engines Fitted with Particulate Traps

1989-02-01
890171
The acceleration response of a supercharged diesel engine passenger car, equipped with a particulate trap, is studied using a simulation program. The superchargers evaluated are the Comprex(R) pressure-wave supercharger as well as turbochargers with fixed and variable-geometry. The particulate trap is placed before the supercharger to promote the trap regeneration and to reduce the pumping gas-exchange work. Particulate traps currently used are such a large thermal sink that the acceleration response is unacceptable. There are promising innovations in progress to develop a particulate trap with less than a quarter of the present mass. The computations demonstrate that the acceleration response should then be acceptable.
Technical Paper

Extruded Ceramic-A New Technology for the Comprex®-Rotor

1989-02-01
890425
Close collaboration between ABB and NGK enabled the development of the rotor for the Comprex(R) pressure-wave supercharger (PWS) as an extruded component in pressureless sintered silicon nitride. The ceramic rotor is lighter than the steel rotor, permitting a free-running PWS. And, the lower thermal expansion of ceramic improves the supercharging efficiency. Prototypes have been road tested since 1984 and fulfil the major engineering requirements: burst speed thrice nominal, probability of fracture ≤ 10-5, maximum temperature well above operating and low risk of damage from foreign objects. When the ceramic rotor becomes cost competitive and can be mass produced, it will considerably expand the range of applications of the PWS.
Technical Paper

The Free Running Comprex®

1989-02-01
890452
The Comprex(R) is a pressure-wave supercharger (PWS) for passenger car diesel engines. It has many features which ideally suit it for the continually increasing demands on driveability, fuel economy and reduction of exhaust pollutants. To counter the disadvantages of the previously required belt drive, a free-running machine was developed. It is self driven by the kinetic energy of the exhaust gas; made possible by employing a rotor having reduced inertia. In addition to the well known Comprex features, this advanced development offers advantages such as rapid response, high efficiency, compactness and freedom in placement. The paper discusses the design of the free-running PWS, its construction, supercharging characteristics and preliminary experience.
Technical Paper

Particulate Traps for Construction Machines Properties and Field Experience

2000-06-19
2000-01-1923
1 Occupational Health Authorities in Germany and Switzerland require the use of particulate traps (PT) on construction machines used in underground and in tunneling since 1994. Swiss EPA has extended this requirement 1998 to all construction sites which are in or close to cities. During the VERT*-project, [1, 2, 3, 4, 5]**, traps systems were evaluated for this purpose and only those providing efficiencies over 95% for ultrafine particles < 200 nm have received official recommendation. 10 trap-systems are very popular now for these application, most of them for retrofitting existing engines. Efficiency data will be given as well as experience during a 2-years authority-controlled field test. LIEBHERR, producing their own Diesel engines in Switzerland and construction machines in Germany is the first company worldwide supplying particulate traps as OEM-feature (Original Equipment Manufacturing) on customers request.
Technical Paper

Particulate Traps Used in City-Buses in Switzerland

2000-06-19
2000-01-1927
1 Switzerland is enforcing the use of particulate traps for offroad applications like construction as well as for occupational health applications like tunneling. This decision is based on the results of the VERT-project (1994-1999), which included basic aerosol research, bench screening and field testing of promising solutions as well as the development of implementation tools like trap specification, certification scheems and field control measures. On the other hand there is no corresponding regulation for city-buses yet although PM 10 is about 2× above limit in most Swiss cities. Public pressure however is growing and city transport authorities have reacted by retrofitting Diesel city-buses instead of waiting for cleaner engine technology or CNG-conversions. The favored trap system with about 200 retrofits so far is the CRT.
Technical Paper

Best Available Technology for Emission Reduction of Small 4S-SI-Engines

1999-09-28
1999-01-3338
1 Small off-road 4-stroke SI-engines have extraordinarily high pollutant emissions. These must be curtailed to comply with the new Swiss clean air act LRV 98. The Swiss environmental protection agency (BUWAL) investigated the state of the technology. The aim was a cleaner agricultural walk behind mower with a 10kW 4-stroke SI-engine. Two engine designs were compared: side-valve and OHV. A commercially available 3-way catalytic converter system substantially curtailed emissions: In the ISO 8178 G test-cycle-average, HC was minimized to 8% and CO to 5% of raw emissions. At part load points, the residual emission was < 1%. Simultaneously, fuel consumption improved 10%. Using a special gasoline (Swiss standard SN 181 163), the aromatic hydrocarbons were curtailed, e.g. Benzene < 1%, and fuel consumption further improved. Those results were confirmed in field tests. The engine is approved for retrofitting.
Technical Paper

Particulate Traps for Retro-Fitting Construction Site Engines VERT: Final Measurements and Implementation

1999-03-01
1999-01-0116
1 The VERT project aimed at curtailing the construction site diesel emissions of ultra-fine particles to 1% of the raw emissions. Thus, compliance with occupational health legislation should be achieved. Particulate traps have attained this target. In contrast, engine tuning, reformulated fuels and oxidation catalytic converters are almost ineffective. This paper reports on the concluding project stage in which 10 traps were field tested during 2 years. Subsequent detailed measurements confirmed the excellent results: > 99% filtration rate was achieved in the nano-particulate range. The PAH, too, were very efficiently eliminated. Trap deployment becomes therefore imperative to fulfill VERT-targets.
Technical Paper

Retrofitting TRU-Diesel Engines with DPF-Systems Using FBC and Intake Throttling for Active Regeneration

2005-04-11
2005-01-0662
Transport Refrigeration Units (TRU) powered by small diesel engines emit high PM and cause locally high PM levels. The concomitant health risks spurred efforts to devise a cost-effective curtailment of these emissions. Diesel particulate filters (DPF) of ceramic honeycomb construction very efficiently trap PM emissions, even ultrafines in the lung penetrating size range of below 300 nm. A fuel borne catalyst (FBC) can facilitate trap regeneration, by lowering the exhaust temperature requirements, but cannot alone guarantee reliable regeneration under all operating conditions of the TRU. A Swiss development team together with industrial partners therefore developed a fully automatic active regeneration system for the California Air Resources Board.
X